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Abstract: This study presents different procedures for ab initio modeling of peptide loops of
different sizes in proteins. Small loops (up to 8–12 residues) were generated by a straightforward
procedurewith subsequent “averaging” over all the low-energy conformersobtained. Theaveraged
conformer fairly represents the entire set of low-energy conformers, root mean square deviation
(RMSD) values being from 1.01 Å for a 4-residue loop to 1.94 Å for an 8-residue loop. Three-
dimensional (3D) structures for several medium loops (20–30 residues) and for two large loops (54
and 61 residues) were predicted using residue–residue contact matrices divided into variable parts
corresponding to the loops, and into aconstant part corresponding to theknown coreof theprotein.
For each medium loop, a very limited number of sterically reasonable Ca traces (from 1to 3) was
found; RMSD valuesranged from2.4 to 5.9 Å. SingleCa tracespredicted for each of the large loops
possessed RMSD values of 4.5 Å. Generally, ab initio loop modeling presented in this work
combines elements of computational procedures developed both for protein folding and for peptide
conformational analysis. © 2001 John Wiley & Sons, Inc. Biopolymers (Pept Sci) 60: 153–168,
2001
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INTRODUCTION

Determining three-dimensional (3D) structures of the
loops in proteins is one of the central tasks facing
biomolecular modeling. The importanceof this task is
underlined by the fact that conformational transitions
in proteins involving loops are very difficult to ob-
serve experimentally: even if the x-ray structure of an
entire protein is available, it wil l provide just one
snapshot out of many conformational possibilities ex-
isting for its loops. A good example is the ternary
complex of the HIV glycoprotein gp120, the cell
membrane-bound protein CD4, and an antibody. To

crystallize the complex, the authors had to use an
engineered “core” gp120 that lacked the highly mo-
bile V1/V2 and V3 loops crucial for almost all bio-
logically relevant interactions.1

Current efforts in modeling loops in proteins fall
into two main categories. One is ab initio modeling,
restoring feasible loop structures based on some gen-
eral physical principles. The other is a knowledge-
based approach, which basically substitutes the 3D
structureof a given loop by 3D structure(s) of another
loop(s) selected among those with the experimentally
known structures based on some criteria of similarity.
Both approaches have rapidly developed in the last
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decade; for the latest review see, e.g., Ref. 2, and the
references therein.

The general outline of the most ab initio proce-
dures includes (a) generating the initial set of loop
conformers, (b) insertion of this set into the existing
structure of the protein, (c) refinement of these struc-
tures by energy calculations, and (d) selection of the
most “appropriate” final structure(s) of the loop (cf.
Ref. 3). Various computational algorithms have been
developed to implement these procedures; some ex-
amples are described below. One of the earliest was
Monte Carlo sampling starting from an extended loop
structure constrained by the requirements to keep the
endpoints of the loop at the chosen distances4. This
procedure was applied to eight loops ranging from 7
to 9 residues in size. The best results yielded a root
mean square deviation (RMSD) value of 1.53 Å for
the heavy atoms of the backbone in the 9-residue loop
(the T2 loop4), which includes contribution from the
constrained end-point residues (The RMSD values
mentioned here and further in the text relate to “loop-
to-loop” RMSD values (see below), if otherwise not
specified). Other authors suggested a Monte Carlo
simulated annealing procedure to generate energeti-
cally reasonable structures within the existing protein
structure starting from a random conformation.5 In
this case, the best result (obtained for the longest
loop) was a RMSD value of 1.87 Å for the 9-residue
loop bovine pancreatic trypsin inhibitor (BPTI) 10–
18. The same procedure with modification of the
Monte Carlo procedure resulted in a RMSD5 1.19 Å
or the 9-residue loop 2rhe 24–32, and with some
modification of the force field used, in a RMSD
5 0.93 Å for the same 9-residue loop BPTI 10–18.7

Combination of the Monte Carlo and molecular dy-
namics simulations with employment of a solvation
model obtained a low energy structure of the 12-
residue loop (ribonuclease A 13–24) with the RMSD
5 0.80 Å; in this case, however, the RMSD value has
been calculated for the backbone atoms of the entire
protein.3 An elegant algorithm, the valence geometry
scaling-relaxation, “to fill” the absent parts of the 3D
protein structure starting from random segments, has
been applied to the 7-residue loop 7rxn 16–22, and
yielded the RMSD value of 0.70 Å8; the same algo-
rithm enhanced with the multiple copy sampling low-
ered the RMSD value for the same loop to 0.54 Å9. A
very recent paper used generation of random confor-
mations for the loop in an already existing protein
environment.2 Subsequent energy minimization of the
loop conformers was performed employing a “pseu-
do-energy” scoring function deduced mainly from
distributions for the dihedral angles values in the
backbone and side chains that are experimentally ob-

served in the Protein Data Bank (PDB). It appeared
that 90% of the low-energy conformers generated for
loops up to 8 residues possess RMSD values less than
2 Å; for 12-residue loops, however, this number de-
creases to 30%, with further reduction to only 5% for
the largest 14-residue loops.2 These results are typical
for current ab initio procedures, as well as typical in
the problems they are confronting. First, they handle
only relatively small loops, since the number of con-
formers to consider increases exponentially with the
size of the loop. Second, the choice of the “right”
conformer among those obtained by the procedure is
often not straightforward; the lowest-energy con-
former does not necessarily correspond to the lowest
RMSD value.

The knowledge-based approach depends on a rep-
resentative database composed of loops of the appro-
priate size from known 3D structures, which can be
used as a “training set” for the initial selection of
possible conformers of the loops with an unknown 3D
structure. Some sort of energy minimization regularly
follows the initial selection. Different aspects of
building loop databases are discussed in several recent
publications (e.g., Refs. 10–12). The loop databases
may be built analyzing either the values of the dihe-
dral angles for protein backbone, as in Ref. 13, or
selected interatomic distances (e.g., between Ca and
Cb atoms,14 or both12). One of the first databases was
proposed in Ref. 13, where the key angles were the
fi11 andci along the peptide chain. The best results
obtained using this database were prediction of ten
plausible structures for the 11-residue disulfide-bound
crambin fragment 16–26 with RMSD values less than
2.0 Å (out of 250,000 simulations).13 A loop database
constructed from the PDB data was employed to
predict low-energy structures of loops up to 9 residues
with RMSD values less than 1.79 Å.14 Recently, a
rather sophisticated search procedure over an exhaus-
tive loop database yielded predictions of 8-residue
loops with an average RMSD values of 3.8 Å.12

Obviously, the knowledge-based approach is limited
by the average size of loops included in the database;
it is hardly feasible to build a representative database
of loops larger than 20 residues (less than 100 loops of
the size over 19 residues have been found in the PDB
recently2). Therefore, the only option for dealing with
loops of larger size within this approach is to employ
homology modeling. The best results obtained by
homology modeling at the CASP-1998 event were
predictions of several loops of 10–12 residues with a
RMSD of 2.5–3.5 Å, and one 20-residue loop with a
RMSD of 5.0 Å (reviewed in Ref. 15).

Both approaches have their own obvious limitations,
which are, in part, discussed above. However, there is
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one more limitation that is not so obvious. Namely, both
approaches attempt to predict all loops in proteins with
the same procedure, disregarding such important factors
as the size of the loop and specific goals of this particular
prediction. For instance, if the loop is a short one (3–5
residues) connecting highly structured protein frag-
ments, as transmembrane (TM) helices (see below), it
will be easy to generate all possible conformers of such
loop with any of several available computational proce-
dures. At the same time, one may expect that all con-
formers of the short loop will be geometrically similar,
so almost any of the energetically reasonable conformers
will represent a fairly good prediction. On the other
hand, if the loop is more than 30–40 residues long, even
estimations of the conformational energy will be less
reliable due to inevitable uncertainty in the force field
employed. Also, the large loop is expected to be much
more flexible than a short one: should the prediction be
limited to only one “best” structure, or it would be more
meaningful to consider several structures of the loop as
equally possible? Those and similar problems, in our
view, may be avoided by considering ab initio prediction
of different loops in proteins by separate procedures.

This paradigm seems even more reasonable, view-
ing the problem of ab initio modeling of loops from
two different methodological approaches. On the one
hand, loop modeling is part of the general problem of
ab initio protein folding. Indeed, one plausible sce-
narios to address the problem of protein folding would
be to predict sequence fragments with regular 3D
structure, asa-helices andb-strands, pack them to-
gether, and then restore the “unstructured” fragments,
which often are loops. On the other hand, each indi-
vidual loop, even in large proteins, is a peptide of the
size up to 60–70 residues (as the 70-membered
V1/V2 loop in the glycoprotein gp120 (more than 490
residues) in the HIV envelope1 that retains significant
inherent mobility within the framework of the remain-
ing part of the 3D structure of a given protein. There-
fore, ab initio loop modeling should, in our view,
combine elements of computational procedures devel-
oped both for protein folding and for peptide confor-
mational analysis. This study provides examples of
applications of the procedures, which we have devel-
oped in the past several years to model protein loops
varying from 4 to 60 residues.

METHODS

Generating Conformations of Small
Loops

Since the small loops we have considered in this study
were those connecting two TM helices of bacterio-

rhodopsin (BR, see below), each loop was represented
by the loop itself and by the two flanking N- and
C-terminal helical fragments of five residues each.
The backbone dihedral angles of the flanking frag-
ments were “frozen” in the values corresponding to
the x-ray structure of BR.16 All possible combinations
of local minima ofE, F, C, A, andA* types (according
to the Zimmerman’s notation17) for the peptide back-
bone of each amino acid residue in the loop were
considered (minima ofF, C, andA types were con-
sidered for Pro residues, and ofE, F, C, A, A*, C*, F* ,
andE* types for Gly residues). Rigid valence geom-
etry with the planartrans-peptide bonds was assumed.
Several filters were used to eliminate conformers from
further considerations. First, the backbone structures
were constrained by satisfying the requirementsDij

5 D0
ij 6 2 Å, whereDij are distances between theith

and jth Ca atoms of the N- and C-terminal flanking
fragments, andD0

ij are these distances in the x-ray
structure. Then, the selected backbone structures were
subjected to energy minimization employing the
ECEPP/2 force field18,19; all dihedral angles in the
loop, including thev angles of the Pro residues, were
allowed to rotate. The total energy included also the
sum of parabolic potentialsEij 5 E0 (Dij 2 D0

ij)
2,

whereE0 5 1000 kcal/mol. The low-energy backbone
structures (DE 2 Emin , 15 kcal/mol) were selected.
Finally, only structures differing by more than 40° in
at least one value of any backbone dihedral angle
were selected among low-energy conformers.

Buildup Procedure for Medium Loops

The procedure of a stepwise elongation of peptide
backbone to build a loop has been applied for the
18-residue outside loop BR 62–79 (L62GYGLT-
MVPFGGEQNPIY79) connecting BR2 and BR3 he-
lices. The procedure started from restoring the x-ray
structure of the TM helical bundle with the “aver-
aged” conformers representing the entire sets of low-
energy conformers of the small outside loops BR
127–133 and BR 190–201 (see the Small Loops sub-
section) to create a united “framework” for the further
loop building. The backbone of the first stem residue
of the loop, Leu61, was overlapped with the corre-
sponding residue of the framework. Then, the buildup
procedure considered all possible backbone confor-
mations for the newly added residue (one residue at a
step, as opposed to random generation of the loop
conformers within the existing 3D structure of the
protein2). The conformations were selected from the
set of the preferred conformers for amino acid resi-
dues found in proteins,20 and from the local minima of
the Ramachandran map,17 i.e., of the followingf,c
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points:2140°, 140°;275°, 140°;287°, 24°; 265°,
242°; and 77°, 20°. There was an additionalf,c
point for Gly: 107°,2174°; for Pro, thef,c points
were 275°, 140°;275°, 24°; and275°, 242°. At
each elongation step, the system of distance limita-
tions was imposed on the growing peptide chain.
First, the growing chain was required to be self-
avoided, as well as to avoid sterical clashes with
residues comprising the framework (i.e., the corre-
sponding Ca–Ca distances should not be less than 5
Å). Second, the chain could not reach “the point of no
return,” i.e., the distance between the last Ca atom of
the growing chain and the Ca atom of the “target”
residue Trp80 should not be larger than 3N Å, where
N is the number of peptide groups between the last
residue of the growing chain and Trp80. At the first
step of the buildup procedure, all combinations of
local minima for the peptide backbone of the BR
62–72 fragment were considered. Then, in nine steps,
the entire set of geometrically possible conformers of
the loop backbone was constructed (see also Ref. 21).
Energy calculations were then performed for all back-
bone conformers in the same way as for the small
loops (i.e., with the 5-residue flanking helical frag-
ments).

Restoring Loops by Residue–Residue
Contact Matrices

General Considerations.This approach is based on
residue-residue contact (0,1)-matrices describing the
system of contacts in a protein.22 (A contact is defined
as the Ca–Ca distance less than 8 Å between a pair of
residues in the 3D structure of the protein.) Our gen-
eral procedure for ab initio prediction of the residue–
residue contact matrices is as follows. The starting
contact matrices are obtained from the protein se-
quence based on prediction of the residue coordina-
tion numbers (number of contacts) for each amino
acid residue in the sequence, and on prediction of
segments of regular structure (a-helices and
b-strands) by a consensus of readily available statis-
tical prediction methods (see, e.g., the list in the URL
address23). Then, an iterative procedure refines the
starting matrices according to (a) the values of known
probabilities of contacts between residues with given
coordination numbers, (b) the value of the average
density of packing for any 3D structure that could be
restored from the obtained matrix, and (c) the require-
ment of geometrical self-consistence for resulting 3D
structures. This procedure was employed in this study
for restoring the medium loops. For restoring the large
loops, the approach additionally exploits certain spe-
cific properties of the first few eigenvectorsYi of

residue–residue contact matrices associated with the
largest eigenvaluesli.

Generally, to predict 3D structures of loops in
proteins, we divide the matrices into two distinct
parts, the invariable part corresponding to the protein
itself without loops (this part is known), and the
variable part corresponding to loops only (unknown,
to be determined). More exactly, we consider three
types of residue–residue matrices for each given pro-
tein. The first matrixAc (the “core” or “constant” part)
includes the submatrix of the known contacts in the
protein without loops, as well as the known contacts
between the loop residues and the residues belonging
to the invariable part of the protein (for instance, the
contacts between positionsai,i11, ai,i12, the standard
contacts insidea-helices, disulfide bonds, etc.). The
second oneAn is one of “noncontacts.” It includes the
known “noncontact” positions, or known absence of
contacts (i.e., matrix elements corresponding to the
Ca–Ca distances greater than 8 Å) in both the invari-
able and variable parts of the protein (e.g., the absence
of contacts between the ends of longer elements of
a-helices orb-strands). The third matrixAx corre-
sponds to unknown contacts that need to be predicted
within each loop, between the loops, and between the
loops and the invariable part of the protein. Elements
of each of the three matrices are exemplified in Fig-
ure 1.

Vector of Coordination Numbers.The algorithm for
prediction of the vector of coordination numbers start-
ing with the amino acid sequence and the predicted
segments of the regular structure has been described
earlier.24 To describe briefly: the coordination number
ni for each type of amino acid residues is considered
a sum of the average value for this type of residue^ni&
and some positional incrementDni. The average val-
ues depend also on the type of the regular (or irreg-
ular) structure that contains the residue in question.
The same is true for the positional increment values,
which depend also on the coordination numbers of the
neighboring residues in the amino acid sequence. The
values of the average coordination numbers for dif-
ferent types of residues in different regular/irregular
structures, as well as the values of coefficients needed
to calculate various types of positional increments,
have been obtained by processing of high resolution
x-ray data of proteins from the PDB (total number of
65 nonhomologous proteins ranging from 52 to 450
residues) and reported previously.24

When regular segments are known (in our case,
they are predicted by the consensus of several statis-
tical methods), the average values of coordination
numbers contributing to the vector of the coordination
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numbersN can be taken directly from those previ-
ously reported.24 The vector of the positional incre-
ments DN can be calculated as a solution of the
following linear system:

~E 2 B!DN 5 G

where E is a unity matrix, and the values of the
coefficients forming the matrixB and the vectorG
also can be taken from the previous work.24

For loop prediction, this algorithm was modified
by adding the requirement that the total number of
contacts predicted for a given residue in the contact
matrix consisting of the constant and variable parts
should not be smaller than the number of contacts for
the same residue in the constant part alonenci. This
was achieved by resolving the following minimization
problem:

@~E 2 B!DN2G]23min
DN

under the conditionsDni . (nci 2 ^ni&), where thei
index relates to all residues not belonging to loops.
This requirement constrains possible solutions for the
vector of the coordination numbers to physically rea-
sonable values. In another slight modification of the
algorithm, the elements of the vectorsN were
smoothed using a window-like technique (the 5-resi-
due windows) for predictions of the large loops.

Prediction of Matrices.As a first approximation, the
contact matrixA0

x was built on the basic of the
probability matrixP each element of which,pij , is the
product of probabilities of the contact between resi-
duesi andj, which areqi andqj, respectively. In turn,
qi 5 (ni 2 ci)/vi, whereni is the coordination number
of the ith residue,ci is the number of the known
contacts in theith row of the entire matrix, andvi is
the number of “free vacancies” in theith row, i.e., the
number of residues in a given proteinN minus the
number of all known contacts and “noncontacts” in

FIGURE 1 Residue–residue contact matrix for predicted 3D structure of 3c2c (blue and green
lines in Figure 4b). The constant partAc is shown in red, the “noncontact” matrixAn, is shown in
green, and predicted variable contactsAx, are shown in blue. Numbers correspond to the predicted
loops.
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the ith row. Accordingly,vi 5 N 2 ci 2 bi, wherebi

is the number of “noncontacts” that are already
present in theith row.

At the first step, the noncontact areas were inserted
in the matricesA0

n. It was observed that the matrix
elements for which thepij values ranks in the lower
20–30% often correspond to actual noncontacts in
experimentally determined structures (more than 20
nonhomologous proteins from the PDB ranging from
46 to 123 residues). This observation allows creation
of the noncontact areas in the matricesA0

n; in this
study, we have used a threshold of 29%. Similarly, the
matrix elements with the highestpij values may be
used for creating the “contact” areas in the matrices
A0

x. In this case, however, we know the exact ex-
pected number of contacts inAx, which is Mx 5 IN
2 IAcI, where I is a unity vector. Accordingly, we
can insertMx contacts into the matrixA0

x. (In our
experience, unlike prediction of the noncontacts, this
procedure predicts correctly only about 50% contacts;
obviously, it requires further refinement.)

The second approximation of the matrixAx was
obtained differently for the medium and large loops.
For medium loops, we used the routine outlined ear-
lier.22 Namely, we minimize the following penalty
function:

F 5 O aij p ~1 2 pij! p f1ij p f2ij,

where summation is over all contacts in the matrixA
5 Ac 1 Ax. The minimization is performed under
condition aij , a2

ij , wherea2
ij are elements of the

squared matrixA2. (This condition provides spatial
consistence of the 3D structure, as shown earlier.25 )
The normalized squared deviationf1 is designed to
preserve the observed dependence between the ele-
ments of the matricesA2 andA3 as follows:

f1ij 5 ~aaij
2 2 aij

3 1 b!2 p @1/~f1ij
max 2 f1ij

min!#,

wherea 5 2.1, b 5 11.6. This provides a constraint
on the protein density. The normalized squared devi-
ation f2 also preserves the dependence observed be-
tween the following function of the pair of coordina-
tion numbers:

f~ni, nj! 5 g~ni 2 1!~nj 2 1!/~ni 1 nj 2 2! 2 v,

whereg 5 2.91 andv 5 27.33, anda2
ij as follows:

f 2ij 5 @f~ni, nj! 2 aij
2#2 p @1/~f 2ij

max 2 f2ij
min!#.

Both dependencies have been observed earlier22 an-
alyzing the x-ray protein structures from the PDB (65
nonhomologous proteins, all smaller than 130 resi-
dues); the numerical values of the coefficients were
also calculated previously.22

The functionF has been minimized by redistribut-
ing theMx contacts in the matrixA0

x in the following
way. First, 30% of the contacts that correspond to the
elements of penalty matrixFij with the largest values
were removed. Then, the 30% of the contacts were
distributed over all vacant positions in the matrixA0

x,
which correspond to the smallest elements of penalty
matrix Fij . Then, the excessive contacts in those rows
and columns of the matrixAx, where the number of
contacts exceeded the predicted coordination numbers
were removed; the contacts corresponding to the po-
sitions with the largest values ofFij were removed
first. The removed contacts were again redistributed
over all vacant positions in the matrixA0

x except the
positions from which they have been removed; this
cycle continued until less than 5% of all contacts in
the matrixA0

x were allowed to move. Then, the entire
procedure was applied repeatedly to the obtained ma-
tricesAi until the difference betweenAi11 andAi was
less than 5%, or the difference in the successive
values of the penalty function,DF 5 Fi 2 Fi11, was
less than 0.01Fi.

For large loops, we obtained the first five terms of
the following eigenvector decomposition for the ma-
trix A 5 Ac 1 A0

x as the sum of the direct products of
the eigenvectors:

U5O
i51

5

liYioYi

The resulting matrixQ is an approximation of the
matrix A, and at the same time, can be regarded as an
approximation of the probability matrixP. Therefore,
we can use the matrixQ for construction of the
matricesA0

x andAn, as we used the matrixP, i.e., to
select the highest and lowest values ofQij for inser-
tion of the contacts and noncontacts into the matrices
A0

x and An, respectively. Note that the important
propertyuij , u2

ij , analogous to the propertyaij , a2
ij

shown for the contacts,25 is fulfilled for the highest
values ofQij automatically, since the elements of the
first eigenvectorY1 are always positive, and the larg-
est eigenvaluel1 is also positive (see the Peron the-
orem26). The obtained matrixA 5 An 1 A1

x was again
decomposed as above, and the entire cycle was re-
peated until convergence is achieved, i.e., until the
difference betweenAi11 andAi was less than 5%. In
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fact, one cycle of this procedure was sufficient for the
large loops in question.

Restoring Ca Traces. The dependence of the ex-
pected distance between a given pair of residues^dij&
on the elements of powers of the contact matrices has
been shown earlier.22 The residue–residue contacts
form a network, so one can find several pathways of
the shortest length k between each pair of residues.
We have observed that the expected distances depend
on the values of the elements of kth power of the
contact matrixaij

k at positions whereak 21
ij 5 0 andaij

k

. 0, as follows:

^dij& 5 aka
kij1bk,

where the regression coefficientsak and bk were
calculated for the set of the proteins with the known
x-ray structures (33 proteins of the size of less than
130 residues). Table I contains the values of the
coefficients as well as the values of the standard
deviations for the residue–residue distancessk^d&.
The dependence in question became less pronounced
with the increase of the k value. For k5 7 and k5 8
it is not observed anymore; the average distances are
31.065.4 Å and 32.66 6.5 Å, respectively. On the
contrary, thes^d& values increase significantly with
an increase of k.

One more observation on the same set of proteins
relates to the average residue–residue intraglobular
distancê dp&. It correlates tightly with the cubic root
of the number of residues in the proteinN. The
corresponding equation is as follows:

^dp& 5 4.65N1/3 2 4.42,

and describes the dependence with good accuracy (the
standard deviations^dp& 5 0.37 Å).

In the actual protocol, the expected residue–residue
distanceŝdij& were obtained using the above regres-
sion equation with coefficients corresponding to the
lowest value of k, which met the requirementsaij

k21

5 0 andaij
k , 0. The distanceŝdij& were then cor-

rected proportionally to the corresponding standard
deviationssij

k to satisfy the expected value for the
average residue–residue intraglobular distance^dp&.
The initial Ca trace for the entire protein was then
restored employing the standard distance geometry
algorithm.27 After that, the restored Ca trace for the
constant part of the protein was replaced with the
same Ca trace taken from the x-ray structure (the best
fit for all Ca atom coordinates); all subsequent refine-
ment procedures involve only the variable part of the
protein.

Refinement of the initial Ca trace began with the
insertion of the standard segments of regular struc-
tures, i.e.,a-helices andb-strands, in their proper
places. This was achieved by least square fitting of the
ends of the segment and its geometrical center. Then,
the refinement procedure was performed for correc-
tion of the chosen residue–residue distances and for
removal of the possible sterical clashes. For this ob-
jective, the penalty functionF(R) consisting of two
relevant terms, was minimized with respect to the set
of the Ca coordinates of the loopR. The function was
as follows:

F~R! 5 Owij~^dij& 2 uRi 2 Rju!2 1 A/~Ri 2 Rj!
6

wherewij 5 10.0 for the elements withi 2 j 5 1, i 2 j
5 2 and for the distances inside the elements of
regular structure, andwij 5 1/sij

k elsewhere;A
5 500,000. For the next-to-neighboring elements (i, j
5 i 1 2), the values of 5.4 or 6.6 Å, whichever was
closer to thêdij& value, have been inserted instead of
the ^dij& values, in accordance with findings previ-
ously reported.28 This substitution allows avoiding
unrealistic values of the angles Ci

a—Ci21
a –Ci12

a . The
summation included the residue–residue distances
within the loops, as well as the residue–residue dis-
tances between the loop and the constant part of the
protein. The conjugate gradient procedure used for
minimization was based on a routine previously de-
scribed.29

An important novel element in refinement of the
Ca traces in this study was the systematic variation of
orientation and “configuration” of the loop segments.
In many loop structures, one can observe the quasiau-
tonomous fragments possessing contacts with the rest
of the protein only in the narrow area along the line
connecting the beginning and the end of the fragment.

Table I Regression Coefficients and Standard
Deviations for Expected Distanceŝdij& Depending onk

k ak bk sk^d&, Å

1a 20.33 7.75 0.85
2 20.92 12.72 1.16
3 20.27 16.49 1.94
4 20.12 20.95 2.52
5 20.05 25.56 3.02
6 20.02 29.96 3.4

a For the pairs in contact, the regression of^dij & on the elements
of squared contact matrix was calculated.
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In the mirror images of such fragments, the set of
contacts/distances between the fragment and the rest
of the globule may change only insignificantly; the
contacts within the fragment will not change at all.
However, the overall structure of the loop comprising
this fragment and its relation to the fixed part of the
protein may change dramatically.

To examine all of such possible “diastereomers,”
we developed a procedure that systematically changes
orientation and “configuration” of the fragments
within a given loop. Namely, for a given original
structure of the loop, the mirror image of the each
fragment within the loop from theith to thejth resi-
dues (i 2 j . 6) was calculated using the reflection
plane S running through the first and the last residues
of the fragment as well as through its geometrical
center (see Figure 2). Then, the values of the function
F(R) corresponding to the various values of the angle
f were calculated, the anglef determining rotation of
the reflection plane around the vectorRi 2 Rj. The
minimal valueF(Rmin) was compared with the origi-
nal value F(Rold) to calculate the differenceDF
5 F(Rmin) 2 F(Rold). When the procedure has shown
that orientation of some “mirrored” fragment can be
changed without significant worsening of the function
F(R), the corresponding new Ca trace was submitted
to a new cycle of refinement, i.e., a new minimization
of F(R) with respect to all atomic coordinates is
performed. Sometimes the new minimization yielded
the new Ca trace that possessed theF(R) value com-
parable to that of the original one (difference less than
10%). In these cases, both (or more) Ca traces origi-
nated from the same contact matrix were regarded as
plausible results.

The above procedure for restoring the Ca traces
from distance matrices has been applied for all me-
dium and large loops. In all cases, except those for
1crn 4–32, 1alc 61–91, 2lzt 64–94, and 1sn3 16–48,
the Ca traces have been restored from the distance
matrices for the entire protein; in the listed cases, only

the parts of the distance matrices that correspond to
the actual loops were used.

Calculating RMSD Values

To evaluate the quality of our predictions, we have
used two different RMSD criteria. Besides the values
obtained by the routine procedure overlapping all
residues in the isolated predicted loop with the exper-
imental one (referred below as a “loop-to-loop”
RMSD), we have calculated also the RMSD differ-
ences between the residues of the both loops being
fixed in the coordinate system connected with the
constant part of the protein (a “loop-in-the-structure”
RMSD value). The latter values reflect not only sim-
ilarity in the internal structures of the both loops, but
also similarity in their orientations with respect to the
3D structure of the entire protein (see also definitions
of the “local” and “global” RMSD values2). In all
cases, the RMSD values have been calculated for the
coordinates of the Ca atoms only.

RESULTS AND DISCUSSION

Small Loops (From 4 to 12 Residues)

We have applied a straightforward procedure for gen-
erating low-energy conformations of small loops (see
the Methods section) to modeling the interhelical
loops in the x-ray structure of bacteriorhodopsin.16

Summary of the results is given in Table II (see also
Ref. 21). For instance, for the 7-residue loop 31–37 in
BR (the G31MGVSDP37 loop between helices BR1
and BR2), 1594 conformers of the peptide backbone
were found to satisfy the distance constraintsDij 5
D0

ij 6 2 Å. Out of these, 110 low-energy conformers
(DE , 15 kcal/mol) were obtained. The range of the
“loop-to-loop” RMSD values (Ca atoms) relative to
the x-ray structure for these conformers was 0.87–
2.24 Å, quite comparable to the best results of other
authors cited above. (Note that the RMSD values for
the same loops described in Ref. 21 included 10
flanking residues as well.) At the same time, the
“averaged” low-energy conformer for this loop (the
conformer obtained by averaging the spatial position
of each Ca atom of the loop over all 110 low-energy
conformers) possesses a RMSD value of 1.04 Å,
whereas other low-energy conformers differ from the
“averaged” one by a RMSD range of 0.89–2.60 Å.
Figure 3 illustrates the spatial difference among the
low-energy conformers relative to the “averaged”
one; it is evident that the “averaged” conformer fairly

FIGURE 2 Inversion of the configuration of the fragment
i–j.
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represents the entire set of low-energy conformers, at
least at the level of their Ca traces.

The results listed in Table II include those for the
smallest loop (BR 101–104, 4 residues), and for the
largest one (BR 190–201, 12 residues). One can see
that the “averaged” conformer indeed represents the
available set of the loop conformers for loops up to 8
residues. However, geometrical variations between
low-energy conformers of the 12-residue loop are
significantly larger than those for the 8-residue one.
Also, estimations of conformational energies for the
larger loops obtained in the same way as for the small
loops may be misleading, since they do not consider
possible limitations imposed on the loops by the rest
of the protein, which become more significant with
increasing mobility of the larger loops.

Medium Loops (From 9 to 33 Residues)

Table III contains a general summary of the results
obtained for medium loops in ten proteins. In all

cases, we used the residue-residue contact matrices
divided into the constant “core” part, and the variable
parts corresponding to the loops, as described above
in the Methods section. The loops listed in Table III
have been selected for calculations primarily by two
reasons: (a) they belong to relatively small proteins,
from the 46-residue crambin, 1crn, to the 129-residue
lyzosyme, 2lzt, and (b) conformational mobility for
almost all of them is limited by various constraints.
For instance, the end residues of the loop 1crn 4–32,
Cys4 and Cys32, are connected by disulfide bridge; the
loop contains also one more disulfide bridge, Cys16–
Cys26. The loop 1sn3 16–48 contains three disulfide
bridges, namely Cys16–Cys41, Cys25–Cys46, and
Cys29–Cys48. Two disulfide bridges are in each of the
loops 1alc 61–91 and 2lzt 64–94, which are Cys61–
Cys77 and Cys73–Cys91, and Cys64–Cys80 and Cys76–
Cys94, respectively. Two loops in 1bp2, 13–40 and
107–123 (the latter is, actually, the C-terminal tail of
the protein, which is why it was not included in Table
III), are connected by the disulfide bridge Cys27–

Table II Restored Small Loops in BR

Loop
Between
Helices

Loop
Involves
Residues

Size,
Residues

Number of Low-
Energy Conformers

“Loop-to-Loop” RMSD Values, Å

a b c

BR3–BR4 101–104 4 3 1.01 0.54–0.85 0.65–1.01
BR4–BR5 127–133 7 66 2.11 1.20–3.36 1.49–3.15
BR1–BR2 31–37 7 110 1.04 0.89–2.60 0.87–2.24
BR5–BR6 158–165 8 147 1.94 1.00–3.57 1.23–3.22
BR6–BR7 190–201 12 131 4.26 1.67–7.85 2.90–5.74

a For the average conformer compared to the x-ray structure.
b For all low-energy conformers compared to the average conformer.
c For all low-energy conformers compared to the x-ray structure.

FIGURE 3 Stereoview of all predicted structures of the interhelical loop BR 31–37 (green) and
the averaged structure (blue, shown as ribbon).
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Cys123; besides, some residues in the loop 1bp2
13–40 interact with a calcium ion. Each of the two
loops of 4cpv, 50–64 and 89–102, interacts with a
calcium ion, so the two calcium ions may contribute
to stabilization of the loop structures. The same is true
for loops 3icb 16–25 and 55–63. The loop 351c
50–67 (but not 16–26) may interact with the porphy-
rin moiety in this cytochrome protein; in another
cytochrome, 3c2c, the porphyrin moiety does not in-
teract with any of selected loops.

The above constraints were used to limit the pre-
dicted residue–residue contact matrices by insertion
the invariable contacts corresponding to the disulfide
bridges in the otherwise variable parts of the matrices.
Interactions with the calcium ions as well as with the
porphyrin moieties were disregarded. Another limita-
tion was to insert into the contact matrices the invari-
able contacts, which correspond to segments ofa-he-
lices andb-strands in the loops, predicted by a con-
sensus of available statistical methods. Such predicted
a-helical segments were 4cpv 98–102; 1crn 6–16;
1alc 85–91; 1sn3 22–30; and 2lzt 90–94. The pre-
dicted b-strand fragments were 1alc 61–64, 68–71,
73–76, and 78–92 (the latter in one of the two matri-
ces); 1sn3 37–42; and 2lzt 70–75, 77–80, and 82–86.

The selected loops represent a wide variety of
conformational elements in proteins. The two loops in
the calcium-binding proteins, 4cpv and 3icb, are in-
teracting with each other (see Figure 4a), whereas the
loops 3c2c 42–50 and 84–93 do not interact, since
they are separated by helix 51–59 (Figure 4b). Also,
the relatively long loop, 1bp2 13–40, that connects
two helical fragments interacts with the C-terminal

tail 107–123. (The results obtained for the 3icb, 3c2c,
4cpv, 351c, and 1bp2 proteins, where two loops were
restored simultaneously, have been briefly discussed
earlier.30) The loop 1crn 4–32 contains aa-hairpin-
like structure, involving 29 out of 46 residues of
crambin (Figure 5a). A more complex hairpin-like
structure, where the one leg contains thea-helical
fragment, and the other leg is a somewhat extended
structure, is represented by the loop 1sn3 16–48
(Figure 5b). Both 1alc 61–91 and 2lzt 64–94 loops are
of the similar loose “double ring” structures (Fig-
ure 5c).

Several conclusions can be drawn for the results of
predictions listed in Table III. First, it is interesting to
note that the obtained “loop-to-loop” RMSD values
do not really depend on the size of the loop. Indeed,
the best RMSD values for predicted structures range
from 2.3 Å for the 9-residue loop (3c2c 42–50) to 4.9
Å for the 33-residue loop (1sn3 16–48) including a
RMSD5 4.0 Å for the 15-residue loop (4cpv 50–64),
and a RMSD5 2.4 Å for the 29-residue loop (1crn
4–32). It suggests that the procedure of restoring the
variable parts of the contact matrices is not really
sensitive to dimension of the variable part, at least in
the case of these selected loops. One can see that the
results for the small loops (up to 10–12 residues)
obtained by the straightforward generation of loop
conformers followed by energy minimization are sig-
nificantly better (Table I). However, restoring Ca

traces to the level of peptide backbones in all-atomic
resolution by the Monte Carlo with Minimization
algorithm (MCM31), with subsequent energy calcula-
tions, which has been performed for the 9- and 10-

Table III C a Traces for Medium Loops Obtained from Residue–Residue Contact Matrices

Loop: PDB Entry,
End Residues Size, Residues

No. Ca

Traces
“Loop-to-Loop”

RMSD, Å
“Loop-in-the-Structure”

RMSD, Å

3icb 55–63 9 1 3.3 4.4
3c2c 42–50 9 2 2.3; 2.6 2.6; 5.7
3c2c 84–93 10 2 2.3; 2.8 8.3; 6.3
3icb 16–25 10 2 3.1; 3.3 5.0; 4.3
351c 16–26 11 2 3.3; 3.9 4.3; 4.9
4cpv 89–102 14 1 3.5 5.4
4cpv 50–64 15 2 4.0; 4.2 4.5; 4.4
351c 50–67 18 3 3.6; 4.1; 4.3 4.7; 5.0; 4.9
1bp2 13–40 28 2 3.5; 3.8 4.0; 6.1
1crn 4–32 29 1 2.4 n/aa

1alc 61–91 31 2 3.9; 6.1 n/a
2lzt 64–94 31 1 5.2 n/a
1sn3 16–48 33 3 5.9; 4.9; 5.3 n/a

a As was mentioned, the Ca traces for these loops have been restored using the distance matrices for the loops only, which precluded
calculation of the “loop-in-the-structure” RMSD values.

162 Galaktionov, Nikiforovich, and Marshall



residue loops 3icb 55–63 and 16–25 earlier,30

changed the resulting RMSD values for 3icb 55–63
from 3.3 to 1.7–5.0 Å (22 low-energy conformers
were found), and for 3icb 16–25 from 3.1–3.3 to
1.6–4.2 Å (three low-energy conformers were found).
These results are quite comparable to those in Table I
for the 8- and 12-residue loops BR 158–165 and BR
190–201 producing, at the same time, lesser numbers
of possible backbone conformers. The same trend has
been observed in the results obtained by the same
calculations for the 14-and 15-residue loops 4cpv
89–102 and 50–64, where the resulting RMSD val-
ues changed for 4cpv 89–102 from 3.5 to 1.6–3.4 Å
(three low-energy conformers were found), and for
4cpv 50–64 from 4.0 to 2.9–3.5 Å (two low-energy
conformers were found).30 Therefore, it is reasonable
to expect that for small loops up to 7–8 residues, the
straightforward generation of conformers is still ro-
bust and affordable from the point of view of com-
putational resources; for larger loops, the procedure
discussed in this subsection followed by restoring of
Ca traces to all-atomic resolution is probably a better
option. At least, the alternative buildup procedure,

described in the details in the Methods section, when
applied to the 18-residue loop BR 62–79, yielded 56
low-energy structures of the peptide backbone with
the RMSD values from 3.4 to 8.9 Å (see also Ref. 21).
On the other hand, we achieved only a slight improve-
ment of the results for 1crn 4–32, 1alc 61–91, 2lzt
64–94, and 1sn3 16–48, when all-atomic resolution
was restored by fitting the Ca–Ca distance matrices to
the overlapping fragments of the peptide backbone
undergoing energy minimization during fitting. In this
case, we have obtained 3 low-energy conformers with
RMSD 5 2.5–4.7 Å for 1crn 4–32; 84 low-energy
conformers with RMSD5 3.2–5.7 Å for 1alc 61–91,
32 low-energy conformers with RMSD5 4.9–5.9 Å
for 2lzt 64–94; and 2 low-energy conformers both
with RMSD 5 4.6 Å for 1sn3 16–48.

The successful outcome of the discussed procedure
depends mainly on the quality of prediction of contact
matrices. For instance, the single matrix predicted for
2lzt 64–94 contained the wrong contact between res-
idues 77 and 86. The contact was predicted as part of
a favorable short antiparallelb-sheet involving two
b-strands, 77–80, and 82–86, which, in turn, were

FIGURE 4 (a) Stereoview of the x-ray structure of 3icb (blue) overlapped with predicted loops
(red and green). The loop 16–25 is at the left, and the loop 55–63 is at the right. (b) Stereoview of
the x-ray structure of 3c2c (blue) overlapped with predicted loops (red and green). The loop 42–50
is at the left, and the loop 84–93 is at the right.
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FIGURE 5 (a) Stereoview of the x-ray structure of 1crn (blue) overlapped with the predicted loop
4–32 (green). The loop in the x-ray is shown as ribbon. (b) Stereoview of the x-ray structure of 1snf
(blue) overlapped with the predicted loops 16–48 (green, red, and magenta). The loop in the x-ray
structure is shown as ribbon. (c) Stereoview of the x-ray structure of 2lzt (blue) overlapped with the
predicted loop 64–94 (green). The loop in the x-ray structure is shown as ribbon. Residues 77 and
86, which are mentioned in the text, are labeled.
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predicted by the consensus of statistical methods (see
above). In the x-ray structure of 2lzt, fragment 79–85
is aa-helix, so residues 77 and 86 cannot contact each
other. As a result, one part of the “double-ring” struc-
ture has been predicted very successfully (the “loop-
to-loop” RMSD value at the fragment 64–81 is 2.4
Å), whereas the total RMSD value was only 5.2 Å
(see Figure 5c). In a very similar situation, due to the
wrong prediction of theb-strand fragments, one of the
two matrices predicted for 1alc 61–91 contained the
wrong contact between residues 73 and 81, which are
separated by thea-helical fragment 76–81; the re-
sulting RMSD in this case was 6.1 Å. However, each
particular case of the wrong prediction is different.
For instance, the wrong contact 24–32 in one of the
two matrices predicted for 1bp2 13–40 resulted only
in slight distortion of the corresponding Ca trace in
the region 21–31; the RMSD value was 3.8 Å com-
pared to 3.5 Å obtained for the Ca trace originated
from the another matrix.

Even if the contact matrices are predicted cor-
rectly, the corresponding Ca traces may not reproduce
the target 3D structures. As it is shown above, restor-
ing the Ca–Ca distance matrices from the contact ones
depends on the accuracy of estimation of some nu-
merical parameters, which are taken from experimen-
tal data. More important is the problem of the mirror
images within the Ca trace, which was discussed in
details in the Methods section. It is still possible to
select the wrong “mirror image” of the segment
within the Ca trace by any distance geometry embed-
ding procedure. For instance, one of the Ca traces
restored for the loop 351c 16–26 could be much
closer to the x-ray structure, if it is replaced by the
mirror image of the fragment 16–22 (see the magenta
line in Figure 6). In the same protein, the mirror image
of the fragment 53–65 in the loop 50–67 also could
be closer to the x-ray structure (the red line in Figure
6). One more example is depicted in Figure 4b. In this

case, both Ca traces for the loop 3c2c 84–93 were
originated from the same contact matrix; one of them
would be clearly closer to the x-ray structure, if one of
the fragments inside the loop will be replaced by its
mirror image (the green line in Figure 4b).

The “loop-in-the-structure” RMSD values listed in
Table III are usually larger than their “loop-to-loop”
counterparts, reflecting the errors in determining the
proper orientation of the loops. These errors are
mainly due to the fact that the variations in the ex-
pected distanceŝdij&, are larger for the more distant
residues (see Table I), which are the residues of the
loops relative to the most of the residues of the con-
stant part of the protein.

Large Loops (Up to 60 Residues)

Two large loops, the 54-residue loop 1pca 328–381
and the 61-residue loop 1cd5 129–189, which were
restored in this study by the residue–residue contact
matrix approach are not, in fact, exactly the “loops”
often defined as fragments at the surface of the pro-
teins. These subdomains are more or less locally in-
dependent parts of the protein 3D structure connecting
two a-helical segments, the fragments 311–328 and
381–402 in 1pca, and the fragments 114–129 and
189–195 in 1cd5. For instance, fragment 292–303
intertwines with the loop 328–381 in 1pca (see Figure
7), so this loop contains actually two smaller surface
loops, 328–346 and 367–381, as well as the small
surface segment 355–358. In 1cd5, definition of the
surface loop may be attributed to the 51-residue frag-
ment 139–189, whereas fragment 129–140 is com-
pletely buried inside the 1cd5 molecule (see Figure 8).

Our procedures yielded only one type of the Ca

traces for the large loops in question for both proteins.
They have been restored with remarkable accuracy
considering their size. For the loop 1pca 328–381, the
“loop-to-loop” RMSD value was 4.6 Å, whereas the

FIGURE 6 Stereoview of the x-ray structure of 351c (blue) overlapped with the predicted loops
(red, green, and magenta). The loop 16–26 is at the left, and the loop 50–67 is the right. The mirror
images of the fragment 16–22 (at the left, magenta), and of the fragment 53–65 (at the right, red)
would be closer to the x-ray structure.
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“loop-in-the-structure” RMSD value was 6.2 Å. One
can see in Figure 7 that the restored Ca trace correctly
reproduced all main features found for the loop in the
x-ray structure; i.e., the extended fragment 328–336,
the “loop” 337–346, thea-helical fragment 349–355,
the reversal of the peptide backbone at fragment 356–
359, the extended fragment 360–367, and the loop
368–381. Note that only one of these fragments
(360–366) has been incorporated into the variable
part of the contact matrix for 1pca as ab-strand
according to consensus of secondary structure predic-
tions. Figure 7 shows also that the loop segments,
which are more involved in interactions with the

constant part of the protein molecule, were repro-
duced with the higher accuracy; the less accurate
predictions were made for the less constrained seg-
ments 337–346 and 368–381.

Figure 8 depicts the restored loop 1cd5 129–189
on the background of the x-ray structure of 1cd5. The
“loop-in-the-structure” RMSD value in this case is 8.3
Å, which is higher than for the loop 1pca 328–381,
but the “loop-to-loop” RMSD value is 4.5 Å. The loop
1cd5 129–189 is less constrained by the constant part
of the protein than the loop 1pca 328–381; that is one
of the reasons why our procedures may predict the 3D
loop structures, which are somewhat “shifted” relative

FIGURE 7 The x-ray structure of the fragment 1pca 150–402 (cyan) The loop 328–381 is shown
as ribbon, and the predicted loop 328–381 is shown in red. Fragment 292–303 intertwining with the
loop 328–381 is shown in magenta. The rest of the 1pca molecule does not interact with the loop
328–381.

FIGURE 8 The x-ray structure of the fragment 1cd5 (cyan). The loop 129–189 is shown as
ribbon, and the predicted loop 129–189 is shown in red.
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to the correct spatial position of the loop (see Figure
8). The internal structure of the loop was, however,
reproduced much more accurately (see Figure 9). Two
fragments, theb-strand 131–136 and thea-helical
fragment 155–160, have been incorporated into the
variable part of the contact matrix according to con-
sensus of secondary structure predictions. The former
roughly corresponded to the actualb-strand 133–136,
and has been preserved as such by the procedure of
restoring Ca traces. The latter one, however, did not
correspond to the actuala-helical fragment 164–171,
and has been significantly distorted to accommodate
the general shape of the fragment 161–185 (Figure 9).

CONCLUSIONS

This study outlines our experience in restoring 3D
structures of loops in proteins by ab initio modeling.
We have applied different approaches to the loops of
different sizes. The small loops (up to 12 residues)
have been restored by the direct generation of all
reasonable conformations of the peptide backbone of
the loop, the approach most widely used in modeling
of peptides. On the other hand, the Ca traces for the
medium and large loops (from 9 to 61 residues) have
been restored by predictions of the residue–residue
contact matrices, an approach derived from the field
of protein structure prediction.

The results of the two approaches do not contra-
dict, but rather complement each other. For instance,
the accuracy of reproducing the x-ray structure of the
12-residue loop by the averaged conformer (the “pep-
tide” approach, see Table II) is about the same as the

accuracy obtained by restoring Ca traces for the loops
of the similar size (the “protein” approach, see Table
III). It is reasonable to assume that the Ca traces
obtained by the “protein” approach may stand for the
averaged conformers of the loops of larger size, too.
In this case, subsequent generation of energetically
possible conformations in the vicinity of the Ca trace
by the “peptide” approach may be the way to describe
the entire conformational ensemble of the loop, which
is the ultimate goal of loop modeling.

Our results on restoring Ca traces for the medium
and large loops should be regarded as quite satisfac-
tory. Indeed, we were able to predict 3D structures of
the 20–30-residue loops with the accuracy of the
“loop-by-loop” RMSD of 3.0–4.0 Å, and of the 50–
60-residue loops with the accuracy of RMSD5 4.5
Å. It is comparable with the best ab initio predictions
at the CASP-1998 event (the continuous fragments of
the size of 60–75 residues have been predicted with
the RMSD values of 3.8–4.7 Å32,33. However, in our
view, these results may be further improved by the
procedure similar to that we have applied earlier to the
Ca traces of the loops in 4cpv and 3icb,30, i.e., by
restoring the all-atomic representation of the loops
including the side chains with subsequent energy min-
imization.

Finally, it is noteworthy that the Ca traces for some
of the 30-residue loops (1crn 4–32, 1alc 61–91, 2lzt
64–94 and 1sn3 16–48) have been restored from the
distance matrices involving the loops only, without
the rest of the protein. Nevertheless, the accuracy of
prediction remains basically the same as that for the
Ca traces restored as a part of the entire protein
molecule (see, e.g., the 28–residue loop 1bp2 13–40

FIGURE 9 Overlapped Ca traces for the x-ray structure (cyan) and predicted structure (red) of the
loop 1cd5 129–189. Note thea-helical region 164–171 in the upper right part of the x-ray structure.
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in Table III). It confirms that those highly constrained
loops may be as well regarded as the autonomous
molecules, so our procedures may be applicable to
small protein molecules as well (see also Ref. 34).
Also, our procedures would probably suggest several
possible Ca traces for the surface loops 1pca 328–346
and 1pca 367–381, if they were considered as indi-
vidual entities, and not as parts of the united intra-
globular segment 1pca 328–381. Perhaps it would
lead to the more adequate description as to flexibility
of the surface loops; on the other hand, since our
procedures are validated for the parts of proteins
containing internal fragments, they may be useful for
the more general problems of protein structure pre-
diction.

The authors wish to thank the Monsanto Company
and the National Institutes of Health for grant support
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